Notes

Eric Purdy *

October 10, 2012

1 Log-likelihood of graph can be formulated as a sum over edges

We have a probabilistic model of graph formation, which gives a distribution over graphs for any fixed ranking of the nodes. We want to describe an efficient algorithm for getting perfect samples from the conditional distribution over rankings, given a fixed graph with n nodes.

We assume the following model:

$$
\begin{aligned}
P\left(G \mid z_{0}, \ldots, z_{n-1}\right) & =\prod_{i \neq j} P\left(e_{i j} \in G \mid z_{j}-z_{i}=k\right) \\
& =\prod_{i \neq j} \Delta(k)^{e_{i j}}(1-\Delta(k))^{1-e_{i j}},
\end{aligned}
$$

where $e_{i j}$ is one if the directed edge $i \rightarrow j$ exists, and zero otherwise, and Δ is the probability distribution we wish to infer. And thus

$$
\begin{aligned}
\log P\left(G \mid z_{0}, \ldots, z_{n-1}\right) & =\sum_{i \neq j} e_{i j} \log \Delta(k)+\left(1-e_{i j}\right) \log (1-\Delta(k)), \\
& =C+\sum_{i \neq j} e_{i j} \log \frac{\Delta(k)}{1-\Delta(k)},
\end{aligned}
$$

where C is some constant that is independent of the edges of G, and thus irrelevant

$$
=C+\sum_{i \neq j} e_{i j} \delta\left(z_{j}-z_{i}\right),
$$

where $\delta(k)$ is defined to be $\left(\log \frac{\Delta(k)}{1-\Delta(k)}\right)$.

[^0]
2 Log-likelihood of ranking can be formulated as a sum over edges

By Bayes' law:

$$
\begin{aligned}
P\left(z_{0}, \ldots, z_{n-1} \mid G\right) & \propto P\left(G \mid z_{0}, \ldots z_{n-1}\right) P\left(z_{1}, \ldots, z_{n-1}\right) \\
& \propto P\left(G \mid z_{0}, \ldots z_{n-1}\right),
\end{aligned}
$$

since we have a uniform prior over rankings. Thus, the log-likelihood of the ranking given the graph has the same form as the log-likelihood of the graph given the ranking.

3 Can generate random rankings by random insertion of next node in some fixed ordering

We want to form the ranking by generating a ranking of the first k vertices, and randomly extending it by adding the $k+1$-st vertex in between some two of the already-ranked vertices.

Some notation: let $z_{i}^{(t)}$ be the (zero-based) ranking of node i at time t. It will satisfy the following:

- $z_{0}^{(0)}=0$, i.e., the first ranking is the only possible ranking of a single node.
- $0 \leq z_{i}^{(t)} \leq t-1$, and the $z_{i}^{(t)}$ form a ranking of the first t nodes, i.e., $\left\{z_{i}^{(t)} \mid 0 \leq i \leq t-1\right\}=\{0,1, \ldots, t-1\}$.
- $z_{i}^{(t)} \leq z_{i}^{(t+1)} \leq z_{i}^{(t)}+1$, i.e., a node's ranking at time $t+1$ can either be its ranking at time t, or one more than its ranking at time t.
- If $z_{i}^{(t)}<z_{t+1}^{(t+1)}$, then $z_{i}^{(t+1)}=z_{i}^{(t)}$. This means that nodes that come before the new node $t+1$ will maintain the same rank as before.
- If $z_{i}^{(t)} \geq z_{t+1}^{(t+1)}$, then $z_{i}^{(t+1)}=z_{i}^{(t)}+1$. This means taht nodes that come after the new node $t+1$ will have their rank increased by one.

Now, note that:

$$
\begin{aligned}
P\left(z_{0}^{(n-1)}, \ldots, z_{n-1}^{(n-1)}\right) & =P\left(z_{0}^{(n-1)}\right) \cdot P\left(z_{1}^{(n-1)} \mid z_{0}^{(n-1)}\right) \cdots P\left(z_{n-1}^{(n-1)} \mid z_{0}^{(n-1)}, \ldots, z_{n-2}^{(n-1)}\right) \\
& =P\left(z_{0}^{(0)}\right) \cdot P\left(z_{1}^{(1)} \mid z_{0}^{(0)}\right) \cdots P\left(z_{n-1}^{(n-1)} \mid z_{0}^{(0)}, \ldots, z_{n-2}^{(n-2)}\right)
\end{aligned}
$$

and thus

$$
\log P(\text { ranking })=\sum_{t=0}^{n-1} \log P\left(z_{t}^{(t)} \mid z_{0}^{(0)}, \ldots, z_{t-1}^{(t-1)}\right)
$$

4 CHALLENGE: finish it!

Figure out how to use parts 1 and 2 to perform the sampling described in 3 . You should be able to do it in time $O(E+V)$, where E is the number of edges and V is the number of nodes. This yields a $O\left(V^{2}+E V\right)$ algorithm for drawing perfectly random samples from this distribution, which gives us an efficient strategy for performing EM.

[^0]: *Department of Computer Science, University of Chicago. Email: epurdy@uchicago.edu

