
Askesis: Positive Pathway

Eric Purdy

August 3, 2014

1 Overview

The cerebellum as a whole tries to predict the output of the cerebrum, and takes
over the performance of activities that are sufficiently predictable. The positive
pathway is responsible for producing the outputs of the cerebellum, some of
which will subsequently be filtered out by the negative pathway.

One of the cerebral outputs that is predicted by the cerebellum is the input
that the cerebrum sends to the cerebellum. One function of the positive pathway
is thus to predict its own input at the next time step.

As the cerebellum does its work to predict the output of the cerebrum, it
relies on three kinds of information: commands from the cerebrum, context
from the proprioceptive system, and its own internal model of the state of the
cerebrum and the body.

We will refer to sequences of cerebellar outputs as actions, and the individual
cerebellar outputs as elementary actions.

1.1 Kinds of cells

The positive pathway makes use of several kinds of neurons: mossy fibers, deep
nuclear cells, and the cells of the inferior olive.

We classify mossy fibers into three kinds:

• Command mossy fibers (those coming from the cerebrum via the pontine
nuclei),

• Context mossy fibers (those coming from the spinal cord),

• State mossy fibers (those coming from the deep nuclear cells).

These classes are depicted in Figure 1. This classification is novel, as far as we
are aware. These names are meant to be suggestive, but the true situation is
probably more complex, in that some command cells are probably used mainly
to provide context for other cells’ decision making, and some context cells are
interpreted as commands. Nevertheless, we will use this classification in our
discussion.

We classify the deep nuclear cells into three kinds:

1

Figure 1: Classification of mossy fibers and deep nuclear cells. We have omitted
intermediate cells between the output deep nuclear cells and the neurons of the
spinal cord.

2

• State cells (those whose outputs reenter the cerebellum as mossy fibers),
excitatory

• Output cells (those whose output goes to the spinal cord, possibly via
intermediate neurons),

Both inhibitory and
excitatory, possibly
depending on which
segment of the
cerebellum we’re
looking at.

• Training suppression cells (those whose output goes to the inferior olive).

Look these up - they
use a different
neurotransmitter and
are inhibitory. They
are also smaller than
the other cells.

These classes are again depicted in Figure 1. The classification of state cells vs.
output cells is again novel, as far as we are aware. The difference between these
cells and training suppression cells is already known, although we have not seen
the purpose of training suppression attributed to them. We will discuss training
suppression cells in Chapter ??.

Note that the state cells occur both as mossy fibers and as deep nuclear cells
- they receive input as deep nuclear cells and send output as mossy fibers. We
hypothesize that the cerebellum’s model of the state of the cerebrum, the state
of the body, and the state of the world is encoded by firings of the state cells.

In our models below, we assume a one-to-one mapping between the com-
Word this more
formally. What does
OK mean? What
happens if it’s not
one-to-one? More
work, but doesn’t
invalidate approach. If
it’s just a subset, this
has no effect on the
mathematical model.

mand cells and the state cells. We would also be OK with a one-to-one mapping
between the command cells and a subset of the state cells, i.e., it is OK for some
state cells not to receive input from command cells. We assume that this map-
ping is completely arbitrary, and may be fixed at development. The rest of the
system is set up to learn around this mapping.

Finally, we have the cells of the inferior olive, which signal that an unex-
pected movement has occurred. In general, they just signal that a movement
command has been issued; the unexpected part comes from the fact that the
training suppression cells suppress the inferior olive cells coding a movement
that the cerebellum has predicted.

1.2 Competent Performance

We now give an informal description of the model during performance of an
action. We will give a more formal mathematical model later. The model is
depicted in Figure 2.

Move figure slightly
earlier?Consider the act of walking. We need to make a conscious decision to start

walking, but once we start, our body seems to continue the process on its own.
People with damaged cerebellums report having to plan out such movements
every time they execute them.

The cerebrum initiates actions via the command mossy fibers. Each com-
mand cell corresponds to some suite of learned actions. After the command cell
fires, the cerebellum takes over and executes the desired action.

Every action can be thought of as a series of stages. For instance, during
walking, we push off with one foot, shift our balance slightly to the other leg,
move the foot forward, and then bring it down. In order to perform the action
correctly, the cerebellum has to know what part of the walking cycle it is in.
Such information is encoded by the state cells, which are the deep nuclear cells

3

Figure 2: Overview of the positive pathway during performance. The system
receives input through the mossy fibers, which is used to maintain a state coded
by the activation of a state cell. State cells trigger other state cells to fire
subsequently. State cells also trigger output cells to fire, producing the output
of the positive pathway as deep nuclear cell firings. From t = 2 to t = 3, we
have a timed transition from state cell 2 to state cell 3. From t = 1 to t = 2, we
have a waypoint transition, since the context cell is used to guide the decision
to transition from state cell 1 to state cell 2. See text for more discussion of the
two types of transition.

4

whose outputs are mossy fibers. A state cell is active during a particular moment
in the action.

Each state cell is responsible for two things, intiating the muscle contractions
appropriate to the moment for which the cell is responsible (called “output”),
and ensuring that the next state cell in the sequence fires at the next moment
in time (called “transition”). The information necessary to perform output is
encoded in the synapses between state cells and output cells: the stronger the
synapse, the more likely it is that the state cell will induce the output cell to
fire. This firing will be relayed to the spinal cord, and will eventually result in a
muscle contraction. The information necessary to perform transition is encoded
in the synapses between the current state cell and other state cells: the stronger
the synapse, the more likely it is that the current state cell will induce the next
state cell to fire at the next moment in time.

There are two different ways to decide that a transition is needed: either we
know that we want to be in a particular state at the next moment in time, or
some particular information comes in that suggests that we need to change to a
particular state. We call the first way a “timed transition”, and the second way
a “waypoint transition”. A timed transition simply encodes the information
that one state should follow another at a particular later time. For instance,
during a blink, the eye should close and then open; the commands to open
the eyelid should start a fixed time after the commands to close the eyelid. A
waypoint transition encodes the information that the state of the body in the
world has changed. For instance, during walking, once the leg has successfully
been raised the appropriate amount, this information can be relayed back to
the cerebellum, and the system can advance to the next state, corresponding,
say, to the point in the walking process where the leg begins to be brought back
down.

The end of a movement can be encoded by simply having no strong synapses
from the last state cell in the chain to any subsequent state cell. Alternatively,
there can be another command to stop the motion. Stop commands require a
more complex model than the other phenomena discussed here, so we will defer
discussion until later.

Give a reference to
when. Also really need
to think about stop
commands.

The organization of the positive pathway during competent performance is
described in Figure 2.

1.3 Learning mechanisms

We now give an informal description of the model during learning. We will give
a more formal mathematical model later.

There are two different kinds of learning that take place in the positive
pathway: learning of transitions, and learning of outputs.

Transition learning allows the cerebellum to merge two skills that it has
already learned. If one command is consistently issued before another command,
and the delay between them is consistently t steps later, then the cerebellum
will learn to transition between them. After this has taken place, the first
command will automatically cause the same effects as if the second command

5

Figure 3: Learning of positive pathway transition functions. If command 1 is
consistently followed by command 2 two time steps later, the system will learn
the transition represented by the dashed arrow.

had followed t steps later. We can think of this as “movement chaining”: the
movement coded for by one command cell will be automatically followed by the
movement coded for by a second command cell.

Transition learning takes place at the synapses between two state cells. If
one state cell is consistently active at the time step directly before another state
cell is active, then the synapse between them will be strengthened. This co-
incidence can be caused by the consistent issuance of two commands a fixed
distance apart, as shown in Figure 3. There are other ways to cause the coin-
cidence. For instance, if a particular context cell consistently fires at the time
step before a particular command cell fires, then a transition will be learned
between the context cell and the command cell - this can be thought of as a
“learned reflex”, since it will result in the cerebellum automatically initiating
an action in response to some sensory input, without the need for involvement
of the cerebrum.

Output learning establishes the mapping between states and outputs, al-
lowing the cerebellum to issue commands to the muscles via the spinal cord.
Each state cell has the ability to trigger several output cells, which code for
particular muscle contractions. The cerebellum is taught which output cells
should be fired at a particular movement by the firing of the inferior olive. The
climbing fiber collateral causes the firing of the output cell that corresponds to
the movement that the inferior olive cell codes for. Output learning takes place
when the firing of a particular inferior olive cell consistently coincides with the
firing of a particular state cell, as shown in Figure 4.

6

Figure 4: Learning of positive pathway output functions. If state cell 1 is
consistently active at the same time as training cell 1, the system will learn that
state cell 1 should trigger output 1, as represented by the dashed arrow. Note
that learning should actually be maximized when the training cell fires slightly
after the state cell fires (100 msec?).

7

2 Mathematical models

First, some notation. We break time into discrete points labeled by integers. If
k is the name of a neuron, then we let k(t) be 1 if neuron k fires at time t, and
0 if neuron k does not fire at time t.

We will assume that time is broken up into discrete, regularly spaced steps,
and that all firings occur exactly at the time of a particular time step. This
is obviously not realistic, but it makes everything simpler to write down and
discuss. The model should still work with the messy firing timing that the brain
actually uses.

What is the
relationship between
the various models?

We give four mathematical models of the positive pathway, largely for the
sake of understanding. Each model is more complex than the model before it.
Except for the third and fourth models, each model is a special case of the
next model. The fourth and last model is the only one which seems biologically
feasible. Even more complex models are possible, which might perform better;
We have stopped at the simplest model which is biologically feasible and likely
to perform reasonably well.

2.1 Preliminaries: Conditional Probability

We will be working with conditional probabilities. The conditional probability
of A given B, written P (A|B), is the probability that event A happens given
that we already know that B has happened. It is defined as the probability
that both A and B happen (written A ∩ B) divided by the probability that B
happens.

P (A|B) =
P (A ∩B)

P (B)

If A and B are random variables, then the events we are interested in are
the event that they take on a particular value. We write the probability of
the event that A takes the value α as P (A = α). If we write just P (A), this
should be understood as a function that maps values of A to probabilities, i.e.,
P (A)(α) = P (A = α). A conditional probability P (A|B), where A and B are
random variables, should be understood as a function that maps values of A
and B to probabilities, i.e., P (A|B)(α, β) = P (A = α|B = β).

It is always the case that, for every β,
∑
α P (A = α|B = β) = 1, where the

sum is taken over all possible values of A.

2.2 Model 0: Linearly ordered state cells

The simplest possible model that is worth discussing is the linearly ordered
model. This model is able to learn a list of elementary actions to perform in a
given order. It is not able to learn a looping activity, like walking. It is not able
to merge two actions into a single action - it can only grow an action by adding
additional elementary actions at the end of it.

8

In this model, the state cells are arranged so that each one receives input
from one state cell and gives output to one other state cell, and they are arranged
in a line. Let the state cells be denoted by s1, . . . , sn. If a state cell si fires at
time t, then it is more likely that si+1, the next state cell in the line, fires at
time t+ 1. For the time being, it is impossible for two state cells to fire at the
same time; we will remove this restriction later.

For this simple model we will assume that the command cells are in one-to-
one correspondence with the state cells. Let the command cells be denoted by
c1, . . . , cn. We will assume that if the command cell ci fires at time t, then the
state cell si is guaranteed to fire at time t+ 1. If ci does not fire at time t, then
it is still possible for si to fire at time t + 1, but only if state cell si−1 fires at
time t. For the time being, it is impossible for two command cells to fire at the
same time.

We have the cells of the inferior olive, which we will denote by t1, . . . , tm (t
for training).

Finally, we have the output cells. We will denote the output cells by o1, . . . , om.
We do not assume any correspondence between output cells and state cells, but
we do assume that the output cells are in one-to-one correspondence with the
cells of the inferior olive. If ti fires at time t, then oi is guaranteed to fire at
time t+ 1. ti fires when the overall system should produce output oi, but failed
to.

The system follows the following rules:

P [si(t) = 1|ci(t− 1) = 1] = 1

P [si(t) = 1|si−1(t− 1) = 0, ci(t− 1) = 0] = 0

P [si(t) = 1|si−1(t− 1) = 1, ci(t− 1) = 0] = pi

P [oj(t) = 1|tj(t− 1) = 1] = 1

P [oj(t) = 1|tj(t− 1) = 0, si(t− 1) = 1] = qij

P [oj(t) = 1|tj(t− 1) = 0, (∀i)si(t− 1) = 1] = 0,

where the pi and qij are parameters that are learned over time. Recall that only
one si may be active at any one time in this model, and that only one ci can
fire at a particular time.

How do we learn pi? Given a set of observations of s1, . . . , sn over time, it is
simply the observed conditional probability that si−1 fired immediately before
si, conditioned on the firing of si−1.

pi =
t such that si(t) = 1, si−1(t− 1) = 1

t such that si−1(t− 1) = 1
.

Note that this is not the maximum likelihood setting of parameters, since we
don’t look at whether a firing of si was caused by si−1 firing or by ci firing. This
is important, because it allows the system to change its parameters in response
to the sequence of commands observed.

How do we learn qij? Given a set of observations of s1, . . . , sn and o1, . . . , om
over time, it is simply the observed conditional probability that si fired imme-

9

diately before oj , conditioned on the firing of si.

qij =
t such that oj(t) = 1, si(t− 1) = 1

t such that si(t− 1) = 1
.

Note that this is not the maximum likelihood setting of parameters, since we
don’t look at whether a firing of oj was caused by si firing or by tj firing. This
is important, because it allows the system to change its parameters in response
to the training signals from the inferior olive.

2.3 Model 1: Hidden Markov Model

This model is the same as the above, except that we don’t assume that the
states are linearly ordered, and allow any state cell to influence any other state
cell. (We are only modeling cells within a single microzone, so really we are
only allowing state cells to influence related state cells.) At every time step, if
a command cell fired at the last time step, we activate the corresponding state
cell at this time step. If no command cell fired at the last time step, we pick
a random state cell to make active based only on which state cell was active
at the previous time step. If si was active at the previous time step, we pick
sj with probability pij . Here

∑
j pij = 1, so the pij (called the “transition

probabilities”) give a probability distribution over j for each fixed i.
This model is a slight modification of the Hidden Markov Model in machine

learning. The word “hidden” is slightly inaccurate for our case, since we can
observe the states via seeing which state cell fires, and the data we are learning
from includes the activity of the command cells, which are in one-to-one corre-
spondence with the state cells. Also, we allow multiple outputs to be active at
a given time, while the standard HMM formalism has a single output at each
time step.

This model is able to learn sequences of outputs, and also to merge together
two actions that it already knows. The merging happens by learning a transition
between the state at end of one action and the state at the beginning of the
next action. The model is not able to learn waypoint transitions, as it does
not have input from context cells. All transitions must either be timed, or take
place because of input from command cells.

The system follows the following rules:

P [si(t) = 1|ci(t− 1) = 1] = 1

P [si(t) = 1|ci(t− 1) = 0, sj(t− 1) = 1] = pji

P [oj(t) = 1|tj(t− 1) = 1] = 1

P [oj(t) = 1|tj(t− 1) = 0, si(t− 1) = 1] = qij ,

where the transition probabilities pji and output probabilities qij are learned
over time.

10

How do we learn the pij? Given a set of observations s1, . . . , sn over time, it
is simply the observed conditional probability that si fired immediately before
sj , given the firing of si.

pij =
t such that sj(t) = 1, si(t− 1) = 1

t such that si(t− 1) = 1
.

Note that this is not the maximum likelihood setting of parameters, since we
don’t look at whether a firing of si was caused by sj firing or by ci firing. This is
important, because it allows us to learn transitions that we don’t already know.

How do we learn the qij? Given a set of observations of s1, . . . , sn and
o1, . . . , om over time, it is simply the observed probability that si fired immedi-
ately before oj .

qij =
t such that oj(t) = 1, si(t− 1) = 1

t such that si(t− 1) = 1
.

Note that this is not the maximum likelihood setting of parameters, since we
don’t look at whether a firing of oj was caused by si firing or by tj firing. This
is important, because it allows us to learn outputs that we don’t already know.

2.4 Model 2: Hidden Markov Model with Context

This model is the same as above, except that our transition probabilities and
output probabilities change based on context from the context mossy fibers.
Let the context mossy fibers be denoted by m1, . . . ,m`. We still only allow one
state cell to be active at a given time. We allow at most one command cell to
be active at a given time. We allow any number of context cells to be active at
a given time.

This model can be thought of as an average of multiple copies of the previous
model, one for each context mossy fiber that is active. This allows us to learn
waypoint transitions: if we have a context mossy fiber that is active when the
leg is in a certain position, then we can learn to transition between the state we
want to be in while walking before the leg reaches that position, and the state
we want to be in after the leg reaches that position.

The system follows the following rules:

P [si(t) = 1|ci(t− 1) = 1] = 1

P [si(t) = 1|ci(t− 1) = 0, sj(t− 1) = 1] =
1

#k : mk(t− 1) = 1

∑
k:mk(t−1)=1

pkji

P [oj(t) = 1|tj(t− 1) = 1] = 1

P [oj(t) = 1|tj(t− 1) = 0, si(t− 1) = 1] =
1

#k : mk(t− 1) = 1

∑
k:mk(t−1)=1

qkij ,

where the transition probabilities pkji and output probabilities qkij are learned
over time.

11

How do we learn the pkij? Given a set of observations of s1, . . . , sn and
m1, . . . ,m` over time, it is simply the observed conditional probability that si
fired immediately before sj , given the firing of si and that the mossy fiber mk

was active at time t− 1.

pkij =
t such that sj(t) = 1, si(t− 1) = 1,mk(t− 1) = 1

t such that si(t− 1) = 1,mk(t− 1) = 1
.

Note that this is not the maximum likelihood setting of parameters, since we
don’t look at whether a firing of si was caused by sj firing or by ci firing.

How do we learn the qkij? Given a set of observations of s1, . . . , sn, m1, . . . ,m`,
and o1, . . . , om over time, it is simply the observed conditional probability that
si fired immediately before oj , given the firing of si and that the mossy fiber
mk was active at time t− 1.

qkij =
t such that oj(t) = 1, si(t− 1) = 1,mk(t− 1) = 1

t such that si(t− 1) = 1,mk(t− 1) = 1
.

Note that this is not the maximum likelihood setting of parameters, since we
don’t look at whether a firing of oj was caused by si firing or by tj firing.

2.4.1 Sparsity in the Context Mossy Fibers

This model works by essentially averaging together multiple copies of the previ-
ous model, one for each mossy fiber that is active. It is important to note that
this version of the model cannot work well unless each context mossy fiber is
sparse, that is, fires rarely and only in a narrow band of situations. If this is
not the case, then we will be averaging together models that are not specific to
the situation, and this will make it impossible for the transition function to be
appropriate - we will wind up transitioning to a random state, essentially.

Fortunately, we have access to sparse context signals, since muscles contain
nerves that fire predominantly when the relevant muscle is a particular length.

Look this up, I think
they’re called muscle
spindles.2.5 Model 3: Naive Bayes

We now relax the restriction that only one state cell in a microzone can be active
at a particular time. The state of the system (not counting inputs) is therefore
represented by which subset of the state cells are active at a given time step.
This means that we have an exponential number of states that the system can
be in.

We maintain the one-to-one correspondence between the command cells and
the state cells, and we continue to assume that a state cell will definitely fire
when its corresponding command cell fired in the previous time step.

In this model, we assume that each state cell makes a choice of whether
This paragraph needs
to be finishedto fire at each time step. It makes this choice based on its inputs: command

cells, other state cells, and context cells. Let s be a state cell. We assume that
it performs a relatively straightforward computation: for each of its inputs u,

12

s considers what fraction of the time it has previously fired when that cell has
fired in the previous time step. Specifically, we compare the two conditional
probabilities P [u(t− 1) = 1|s(t) = 1] and P [u(t− 1) = 1|s(t) = 0].

There are three kinds of deep nuclear cells. One projects to the inferior
following paragraph
has conditioning
backwards?

olive, and can be ignored for now. The other two are excitatory and inhibitory,
respectively. We assume that there are state cells of both kinds. An excitatory
state cell can only increase the probability that other cells fire, and thus an
excitatory synapse from cell s1 to cell s2 can only be used to encode the infor-
mation that P [s2(t) = 1|s1(t) = 1] > P [s2(t) = 1|s1 = 0] (and the strength of
the synapse can encode the relative difference between the two). If the reverse
holds (i.e., if the event s1 = 1 should be taken as evidence that we shouldn’t
fire s2), then the best the synapse can do is to erode completely, so that s1 does
not excite s2 at all. Similarly, an inhibitory state cell can only decrease the
probability that another state cell fires, and can only encode the information
that P [s2 = 1|s1 = 1] < P [s2 = 1|s1 = 0].

In the rest of this section, we show that our rule for whether to fire a state
cell makes sense.

We will assume that the probability that si(t) = 1 depends only on the
activity of s1(t− 1), . . . , sn(t− 1) and ci(t− 1). If ci(t− 1) = 1, then we assume
that si(t) = 1. For the time being, let us assume that ci(t − 1) = 0. We then
have (by assumption)

P [si(t)] = P [si(t)|s1(t− 1), . . . , sn(t− 1)]

By Bayes’ rule

∝ P [si] · P [s1(t− 1), . . . , sn(t− 1)|si(t)].

Here P [si] (called the “prior”) is the probability that represents how often si
fires, independent of what inputs it receives.

A common assumption (the “naive Bayes” assumption) is that the si(t− 1)
are independent given si(t). In this case, we have

P [si(t) = ε] = P [si = ε] ·
∏
j

P [sj(t− 1)|si(t) = ε].

Dividing, we have

P [si(t) = 1]

P [si(t) = 0]
=
P [si = 1]

P [si = 0]
·
∏
j

P [sj(t− 1)|si(t) = 1]

P [sj(t− 1)|si(t) = 0]

We can learn the parameters easily:

P [sj(t− 1) = 1|si(t) = 1] =
t such that sj(t− 1) = 1, si(t) = 1

t such that si(t) = 1
,

and analogously for the other parameters.

13

3 Psychophysical phenomena

When you scratch a dog behind the ears, they will sometimes start to move
their leg in a way that looks like an abbreviated form of the motion they would
use to scratch their own ear. We believe that this phenomenon is explained
by the organization of the positive pathway - basically, the context cells are
relaying the information that the ear is being scratched, which results in firing
of the state cells that code for this activity (remember that, in the naive Bayes
model, there is no distinction between commands and context), which results
in the firing of output cells appropriate to scratching the ear, which results in
the observed motion.

4 Predictions

Prediction 4.1. The synapse between the mossy fibers and the deep nuclear
cell should have a classical Hebbian style of learning, in which the synapse is
strengthened when one cell fires immediately before the other.

Prediction 4.2. Learning at a state cell - output cell synapse should be max-
imized when there is some delay between the firings. The delay should be on
the order of 100 msec, analogously with LTD in the parallel fiber - Purkinje cell
synapse.

5 Thoughts

• Stop commands in NB model

• Think about zero denominators in all of the bernoulli estimates

• No difference between commands and context in the NB model

• Why are we using probabilities? Why do we want a probabilistic model?

• Output probabilities should actually be higher than observed, since some
outputs will be filtered out.

• Transition probabilities should also be higher than observed, or at least
should be taken over a small time window. Otherwise it would be difficult
to learn new skills.

• Positive pathway should learn from the negative pathway - rebound firing
should be taken as a training signal

14

