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1 Non-maximal suppression

Non-maximal suppression is a special case of a phenomenon called “explaining
away”. When there are two possible causes of a particular event, knowing that
one of the causes did take place lowers the probability that the other possible
cause took place. The classic example is an alarm that goes off in response to
a robbery, but which can also be set off by an earthquake. Both robbery and
earthquake are very rare events, so their initial probability is low. If all we
know is that the alarm went off, both possible causes become more likely. If we
then learn that an earthquake did indeed take place, then the probability of a
robbery goes back down to something like its initial probability - the earthquake
has “explained away” the evidence provided by the alarm.

Consider now the example of signal coming from muscle spindles, which fire
fastest when their muscle is at a particular length. However, they also fire more
quickly than normal when the muscle is close to the correct length. Consider
two neurons, A, which fires most quickly when a particular muscle is 12 inches
long, and B, which fires most quickly when the muscle is 13 inches long. If
we then learn that both A and B are firing quickly, but that B is firing more
quickly, then our interpretation should be that the muscle is thirteen inches
long. The firing of A is explained away - it comes from the muscle being close
to the correct length.

We can apply this logic whenever we have two similar events that are unlikely
to hold simultaneously.

In order for the non-maximal suppression performed by the Golgi cell to
make sense, we need to know that the granular cells suppressed by a particular
Golgi cell are similar to one another. Some amount of similarity is given just by
the somatotopic mapping encoded by the mossy fibers - mossy fibers that are
close to one another respond to stimuli from regions of the body that are close
to one another.

We thus postulate that the granular cells under a particular Golgi cell func-
tion somewhat like a flock of birds: at each time step, each granular cell updates
its parameters to be more correlated with the Golgi cell, which can be thought
of as the center of the flock. The overall effect is thus to create an ensemble of
granular cells to which non-maximal suppression can be meaningfully applied.

1



2 Maximizing the Covariance

Recall the logistic function

σ(x) =
1

1 + e−x
.

Recall that its derivative is

d

dx
σ(x) =

e−x

(1 + e−x)
2 = σ(x)(1− σ(x)).

Consider the situation where we have a number of granular cells which all
excite the same Golgi cell, and which receive inhibitory signals from that Golgi
cell.

Let xi be a binary variable (either 0 or 1) that encodes whether the i-th
mossy fiber fired at a particular time step. Let x be the vector of all the mossy
fiber activations, so that xi is 1 exactly when the i-th mossy fiber fires, and
0 otherwise. Let p(x) be the probability of observing the value x. We will
assume that we receive a sample from this distribution at every time step. In
this section, we will assume that each sample is independent of the others.

Let the i-th granular cell’s output be defined by

Gi(x) = σ

∑
j

wjixj − θi

 .

Let the Golgi cell’s output be defined by

Z(x) = σ

(∑
i

Gi(x)− ϕ

)
.

Note that we are assuming that the Golgi cell weights all of its inputs evenly.
As discussed above, we wish to maximize the covariance between Gi and Z.

Cov(Gi, Z) = Ex[Gi(x)Z(x)]− Ex[Gi(x)]Ey[Z(y)]

=
∑
x

p(x)Gi(x)Z(x)−
∑
x

p(x)Gi(x)
∑
y

p(y)Z(y)

∂Cov(Gi, Z)

∂wji
=
∑
x

p(x)

[
∂Gi(x)

∂wji
Z(x) +Gi(x)

∂Z(x)

∂wji

]
−
∑
x

p(x)Gi(x)
∑
y

p(y)
∂Z(y)

∂wji
−
∑
x

p(x)
∂Gi(x)

∂wji

∑
y

p(y)Z(y)
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Letting Z =
∑

y p(y)Z(y) and Gi =
∑

x p(x)Gi(x), we have

=
∑
x

p(x)

[
∂Gi(x)

∂wji
Z(x) +Gi(x)

∂Z(x)

∂wji

]
−Gi

∑
x

p(x)
∂Z(x)

∂wji
− Z

∑
x

p(x)
∂Gi(x)

∂wji

=
∑
x

p(x)
(
Z(x)− Z

) ∂Gi(x)

∂wji
+
∑
x

p(x)
(
Gi(x)−Gi

) ∂Z(x)

∂wji

Now, by the chain rule

∂Gi(x)

∂wji
= σ′

(∑
k

wkixk − θi

)
· ∂

∂wji

(∑
k

wkixk − θi

)
= Gi(x)(1−Gi(x))xj

and similarly

∂Z

∂wji
(x) = Z(x)(1− Z(x))

∂

∂wji

(∑
k

Gk(x)− φ

)

= Z(x)(1− Z(x))
∂Gi(x)

∂wji

= Z(x)(1− Z(x))Gi(x)(1−Gi(x))xj

Substituting this into the above, we arrive at

∂Cov(Gi, Z)

∂wji
=
∑
x

p(x)(Z(x)− Z)Gi(x)(1−Gi(x))xj

+
∑
x

p(x)(Gi(x)−Gi)Z(x)(1− Z(x))Gi(x)(1−Gi(x))xj

=
∑
x

p(x)xjGi(x)(1−Gi(x))
[
Z(x)− Z + (Gi(x)−Gi)Z(x)(1− Z(x))

]
=
∑
x

p(x)xjGi(x)(1−Gi(x))Z(x)(1− Z(x))

[
Gi(x)−Gi +

Z(x)− Z
Z(x)(1− Z(x))

]

We can use stochastic gradient descent to maximize the covariance, yielding
the update rule

∆wji = xjGi(x)(1−Gi(x))Z(x)(1− Z(x))
[
Gi(x)−Gi + F (Z)

]
,

where F (Z) = Z−Z
Z(1−Z) .
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Figure 1: ∆wji as a function of Gi, with (Gi −A) = 0.4.

For a fixed Z, we then have (letting A = F (Z))

∆wji ∝ xjGi(x)(1−Gi(x))(Gi(x)− (Gi −A)),

which yields the BCM rule, with zeros at Gi = 0, Gi = 1, and Gi = Gi − A.
Note that the middle threshold, where ∆wji switches from negative to positive,
varies as a function of Z. Changing Z will thus switch the sign of ∆wji for
values of G close to the middle threshold.
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Figure 2: F (Z) = Z−Z
Z(1−Z) , with Z = 0.5
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